On the optimality of conditional expectation as a Bregman predictor

نویسندگان

  • Arindam Banerjee
  • Xin Guo
  • Hui Wang
چکیده

Given a probability space (Ω,F , P ), a F -measurable random variable X , and a sub-σ-algebra G ⊂ F , it is well known that the conditional expectation E[X|G] is the optimal L-predictor (also known as “the least mean square error” predictor) of X among all the G-measurable random variables [8, 11]. In this paper, we provide necessary and sufficient conditions under which the conditional expectation is the unique optimal predictor. We show that E[X|G] is the optimal predictor for all Bregman Loss Functions (BLFs), of which L loss function is a special case. Moreover, under mild conditions, we show that BLFs are exhaustive. Namely, if the inÞmum of E[F (X,Y )] over all the G-measurable random variables Y and for any variable X is attained at the conditional expectation E[X|G], then F is a BLF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CONDITIONAL EXPECTATION IN THE KOPKA'S D-POSETS

The notion of a $D$-poset was introduced in a connection withquantum mechanical models. In this paper, we introduce theconditional expectation of  random variables on theK^{o}pka's $D$-Poset and prove the basic properties ofconditional expectation on this  structure.

متن کامل

Efficient Simulation of a Random Knockout Tournament

We consider the problem of using simulation to efficiently estimate the win probabilities for participants in a general random knockout tournament. Both of our proposed estimators, one based on the notion of “observed survivals” and the other based on conditional expectation and post-stratification, are highly effective in terms of variance reduction when compared to the raw simulation estimato...

متن کامل

Some algebraic properties of Lambert Multipliers on $L^2$ spaces

In this paper, we determine the structure of the space of multipliers of the range of a composition operator $C_varphi$ that induces by the conditional expectation between two $L^p(Sigma)$ spaces.

متن کامل

Mean-Squared Error Analysis of Kernel Regression Estimator for Time Series

Because of a lack of a priori information, the minimum mean-squared error predictor, the conditional expectation, is often not known for a non-Gaussian time series. We show that the nonparametric kernel regression estimator of the conditional expectation is mean-squared consistent for a time series: When used as a predictor, the estimator asymptotically matches the mean-squared error produced b...

متن کامل

Training Conditional Random Fields with Natural Gradient Descent

We propose a novel parameter estimation procedure that works efficiently for conditional random fields (CRF). This algorithm is an extension to the maximum likelihood estimation (MLE), using loss functions defined by Bregman divergences which measure the proximity between the model expectation and the empirical mean of the feature vectors. This leads to a flexible training framework from which ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2005